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Abstract
Quantum theory is venerated by physicists and has been experimentally confirmed
countless times. Despite this, we have no physical justification for the mathematical
postulates upon which it is built. At the opposite end of the spectrum, we have thermo-
dynamics, an old and highly physical branch of physics which has also had a great deal
of experimental verification. This report looks at the unification of thermodynamics
and the pursuit of a justification for quantum theory.

We examine a toy theory of quantum states developed by Rob Spekkens [1], which
reproduces a great deal of quantum theory by considering states as “states of knowledge”
and applying a simple knowledge-based axiom to them, and we attempt to introduce
some theory of thermodynamics to it. In doing so, we build upon existing work on
representations of this theory, and using results from a broad variety of fields such
as large deviations theory and the theory of open quantum systems we successfully
introduce a notion of energy to the theory and construct a simple engine within its
context. We explore the thermodynamic implications of the theory’s axiom and, finally,
suggest avenues for further work.
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Chapter 1

The Context for Our Work

Before I begin the business of reporting on the work completed in the undertaking of this
project, I will offer some context for the work and some thoughts on the importance of
such work. The work lies somewhere around the intersection of the fields of quantum
thermodynamics (QT) and quantum foundations (QF).

Quantum thermodynamics is the unification of the old and the new: it is the study
of thermodynamics in small (quantum scale) systems, and at some level it hopes to unify
the seemingly disjoint fields of thermodynamics and quantum theory by seeing that one
may emerge from the other. The origins of classical thermodynamics were in the wholly
practical application of the study of engines (most notably performed by Sadi Carnot
[2]), but then the development of a statistical theory of thermodynamics in the late
19th century offered us an explanation of the behaviour of macroscopic matter through
simple - yet fallible - models of the microscopic. In contrast, the early 20th century
offered a theory of the microscopic behaviour of matter that appears to this day to
be infallible: quantum mechanics. Whilst advances in statistical thermodynamics have
drawn heavily on results from quantum mechanics, it remains a largely classical theory
based on assumptions on the nature of microscopic behaviour that - while elegant and
indeed effective - are not really rigourously justifiable. That said, the classical laws of
thermodynamics are widely seen as absolute truths in the macroscopic limit, despite
there being no truly watertight justification of, in particular, the famous second law.

Hopefully this account makes it clear that there is a clear appeal in studying QT
and attempting to understand thermodynamics and quantum mechanics together. It
may be worth noting that, whilst it seems that the consensus is that we should wish
thermodynamics to emerge from quantum mechanics, the converse is also appealing to
some.

Furthermore, it should become readily apparent that, if we are to suggest a possi-
bility of the emergence of one set of foundational principles from another, we should
understand the motivation for the statement of the fundamental set of principles. It’s
no secret that many are dissatisfied with the fact that there is no universally accepted
or provable physical interpretation of our entirely mathematical postulates of quantum
mechanics, and while we’ve no doubt as to the quantum nature of reality, there is seem-
ingly very little rationale for this reality. Attempts at a resolution of this uncomfortable
truth form the field of quantum foundations. Explicitly, I feel that - particularly when
taking the point of view that quantum theory may emerge from thermodynamics -
ideas from QF are at the very least a useful tool for attacking problems in QT, and at
most may be an intrinsic part of the latter programme of study.
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The Spekkens toy theory is an extremely conceptually simple classical theory of
local hidden variables that replicates a large number of “quantum” phenomena. It lies
comfortably within the domain of QF. The work documented herein takes the Spekkens
toy theory, and attempts to develop some kind of framework for thermodynamics in
it, thus offering a small number of results within the remit of the programme outlined
above.

Quantum
Thermodynamics

Quantum
Foundations

This
Work
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Chapter 2

The Spekkens Toy Theory

Here we will present a brief overview of the aforementioned Spekkens toy theory. In-
troduced by Robert Spekkens in a 2007 Physical Review A paper [1], the theory offers
a conceptually simple model of states based the principle that an observer’s knowledge
about the exact specification of the state is restricted. Spekkens uses a novel represen-
tation of these states of knowledge, one that is essentially colouring in squares subject
to some simple rules.

Despite this seeming highly arbitary and lacking in complexity, it turns out that
the Spekkens theory can reproduce large amounts of quantum theory: entanglement,
teleportation, action at a distance and more. It is perhaps worth noting that the theory
was later reformulated more generally by the original author [3] but here we will deal
only with the original formulation and with another formulation developed by Matthew
Pusey [4].

2.1 Terminology

There are a few non-standard terms and concepts used in the context of the Spekkens
theory that are key to all of the work contained in this report; a glossary of sorts follows:

Ontic states These are wholly real states of reality; sharp points in phase space. From
the Greek ontos, “to be”.

Epistemic states These are states of knowledge; probability distributions over phase
space and hence over ontic states. From the Greek episteme, “to know”.

Ontic base The ontic states that a given epistemic state spans.

The knowledge balance principle The principal axiom of the Spekkens theory, elab-
orated on below. Broadly speaking, a statement that the observer may only have
at most half of the available knowledge about a system.

Elementary systems The building blocks of the theory, consisting of ontic states and
considered as being “in” an epistemic state, and subject to the knowledge balance
principle.
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2.2 The Basics of the Theory

The knowledge balance principle relies on having a good definition of knowledge, an
end that is achieved by considering questions that can be asked about a system. Take
a 4-element set, say {1, 2, 3, 4}, and choose any 1 element of it. see that we can find
out what this element is by asking 2 questions that respectively divide the set into 2
upon asking them: for example “is the choice either 1 or 2?” and “is the choice either
2 or 3?”.

Knowledge of the answers to these questions is what we mean by knowledge in
this original formulation of the Spekkens theory. Imposing that the most knowledge
an observer is allowed is half of that available makes it clear that in this 4-element
case we could ask one question of the 2, and hence the 4-element set is in some sense
the smallest that we can deal with. In the language of the toy theory, this means our
elementary systems are composed of 4 ontic states, and allowed epistemic states of
maximal (allowed) knowledge have an ontic base consisting of 2 ontic states. Trivially
there is also the case of no knowledge: an epistemic state with an ontic base covering
the whole elementary system.

We represent systems by a matrix of squares representing the ontic states, and
represent the epistemic states by shading the squares corresponding to their ontic bases.
The 7 allowed epistemic states for the elementary system are reproduced in full for
clarity in Fig. 2.1.

Composite systems can be constructed by combining any number elementary sys-
tems. There are various subtleties to the rules and behaviours regarding such systems,
which are investigated in quite some detail in Spekkens’ original paper.

Figure 2.1: All 7 allowed epistemic states for the elementary system of the Spekkens
toy theory

2.3 Representational Connections to Quantum Theory

As noted previously, the Spekkens theory manages to reproduce a variety of predictions
of quantum mechanics. Here we talk in some detail about the connections between
quantum states (and their various representations), and Spekkens’ epistemic states.

2.3.1 Elementary Systems Are Like Qubits

Following the original work, we draw a direct analogy between qubit states and the 7
allowed epistemic states for an elementary system, illustrated in Fig. 2.2. Note that
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Figure 2.2: The analogs between certain qubit states and the allowed epistemic states
of the Spekkens theory. Note that we have represented zero-knowledge state (at the
bottom of the figure) as a density operator rather than a state vector: explicitly, recall
the notation that 1

21 = 1
2 (|0〉 〈0|+ |1〉 〈1|), the fully mixed state.

epistemic states with disjoint ontic bases correspond to states that are antipodal on the
Bloch sphere. Considering this appealing analogue, we will often refer to the elementary
systems as bits, and to composite systems composed of n elementary systems as n-bit
systems.

2.3.2 The Stabilizer Formalism

Before continuing, we take a brief diversion into the stabilizer formalism for qubits.
Developed by Daniel Gottesman in 1996 in the context of quantum error correction [5],
the stabilizer formalism is an elegant representation of quantum states and of operations
upon them. At its core are the observables represented by the Pauli matrices, here
denoted as X, Y and Z but otherwise in their usual form. We also include the 2 by 2
identity matrix I:

X =

(
0 1
1 0

)
; Y =

(
0 −i
i 0

)
(2.1)

Z =

(
1 0
0 −1

)
; I =

(
1 0
0 1

)
As is well-known, these matrices all have eigenvalues of ±1, and in the stabilizer

formalism we use this fact to represent states: a single-qubit state is represented by
the Pauli observable which has an expectation value of 1, eg. |0〉 ⇔ Z, |−〉 ⇔ −X and
so on.

Multi-qubit states require some more notation: we use subscripts on the {X,Y, Z, I}
to indicate which qubit they are operating upon and combine them to form n-qubit
observables (eg. X1Z2I3 would be the 3-qubit observable corresponding to X on qubit
1, Z on qubit 2, and the identity on qubit 3), and specify states by groups of these
observables, where each member of the group has an expectation value of 1. Further-
more, for notational compactness, we usually write the generator of the group, denoted
by the use of angle brackets, rather than its full form, and where Ij appears we do not
write it as its existence is implicit. For example, the Bell state |Φ+〉 = 1√

2
(|00〉+ |11〉)

has expectation values of 1 for the group of observables {I1I2, X1X2, Y1Y2, Z1Z2}, but
if we recall the cyclic property of the Pauli matrices we can see that these observables
are not all independent and we need only write 2 of them to fully specify the group in
terms of its generators: 〈X1X2, Z1Z2〉.

The stabilizer formalism is treated in detail by various authors (eg Refs [5, 6, 7])
but the above summary will suffice for our purposes, which are to be elucidated shortly.
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2.3.3 Toy Stabilizers

Hopefully the juxtaposition of the previous 2 sections will have shown the appeal in
trying to develop some kind of stabilizer formalism for the Spekkens bits. Here we
reproduce the results of Matthew Pusey [4, 8] although we do introduce some slightly
different - but entirely equivalent - definitions. Refs [4, 8] contain a much more detailed
and rigorous analysis of the toy stabilizer formalism.

As stated above, we are interested in using some kind of stabilizer formalism in the
context of the Spekkens theory, and we begin by defining 4 single-system observables:

X := (1,−1, 1,−1) (2.2)
Y := (1,−1,−1, 1)

Z := (1, 1,−1,−1)

I := (1, 1, 1, 1)

In this notation, it is useful to imagine that the +1s correspond to the ontic states in
the ontic base of an epistemic state (shaded), and the −1s to those not in the ontic base
(unshaded). It follows that, in addition to the direct qubit analogy in Section 2.3.1/Fig.
2.2 we now have another representation of the single-system epistemic states, which is
illustrated in Fig. 2.3.

Whilst the assignments of these vectors to observable names is arbitrary, the choice
made here emphasises and simplifies the connection between these 3 equivalent repre-
sentations we have shown here: the toy stabilizer observables for the Spekkens states
are named the same as the qubit stabilizer observables for the qubit states in Fig. 2.2.

Figure 2.3: Following the definitions in Eq. 2.2, it is easy represent the epistemic states
by these observables. Note that, once we have arbitrarily defined the observables, the
assignment of epistemic states to them is not arbitrary, as it is in Fig. 2.2, as the +/−1s
in the definitions of the observables directly correspond to known/unknown ontic states.

2.3.3.1 (Mathematical) Operations on Toy Stabilizers

We introduce some definitions/notation for convenience. We call the core group of
single-system observables P = {X ,Y,Z, I}. The product of 2 toy stabilizer observables
on the same bit is the pointwise/Hadamard product:

(PiPj)m := (Pi � Pj)m = (Pi)m · (Pj)m

For multiple-system observables, we use the same notation as with the qubit stabi-
lizer formalism in which subscripts indicate which system the single-system observable
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is acting on, and use an (almost) outer product to compute the 2-system observable
like so, where A,B ∈ P:

[A1B2]i := [diag(A)⊗ diag(B)]ii = (A)[i mod 4](B)i (2.3)

For composite systems with more than 2 subsystems the natural extension of this
outer product-like operation is used. Finally, we define On as the group of all valid toy
stabilizer observables (excluding the identity I⊗n) on n bits. All other notation used
is the same as for the qubit stabilizer formalism.

2.3.3.2 A Warning

Despite the appealing link between the stabilizer formalism and the Spekkens model,
it is important to note that the toy stabilizers and the qubit stabilizers are not ex-
actly equivalent. Specifically, note that for Pi = (X,Y, Z)i we have the well-known
cyclic property that PiPj = iεijkPk + δijI, whereas in the toy stabilizer formalism the
analogous relation would be PiPj = (1− δij)Pk + δijI. As such, when working in the
toy stabilizer formalism we must be take care to avoid thinking of it as being exactly
the same as the qubit stabilizer formalism.

2.3.4 Composite System Toy Stabilizers

As was briefly mentioned in Section 2.3.2, the representation of single-bit systems by
observables with expectation values of +1 is generalised to multiple-bit systems by the
use of groups of such observables, and indeed by the generators of such groups. A brief
example for the 2-bit case is given here. We can write down the 15-tuple1 of all valid
observables on 2 bits, O2:

O2 = ( I1X2, I1Y2, I1Z2,X1I2,Y1I2,

Z1I2,X1Y2,Y1X2,X1Z2,Z1X2,

Y1Z2,Z1Y2,X1X2,Y1Y2,Z1Z2)

(2.4)

where the vector representations of these observables (should we wish to find them)
can be calculated using Eq. 2.3. We can then represent 2-bit states by groups of these
observables, and in turn by generators of groups, just like for the stabilizers on qubits.
An example for a specific 2-bit composite system is given in Fig. 2.4

It follows that we can also, by generalising O2 and applying a similar procedure,
represent n-bit states by similar group generators.

Figure 2.4: An example mapping of a 2-bit system to a group of toy stabilizer observ-
ables, and hence to their generator (in the angle brackets).

1The slightly pedantic use of a tuple rather than a set here becomes clear later on: its ordering is
arbitrary but it will be necessary for an ordering to be present.
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2.4 Geometric Representation of States

It is well known that all pure qubit states (2D vectors in Hilbert space) lie on the
Bloch sphere, a 2-sphere on which antipodal points correspond to orthogonal vectors
in Hilbert space, and that all mixed qubit states lie within this sphere [7].

Specifically, for a general pure state |ψ〉 = α |0〉+ β |1〉, the consideration that the
state must be normalised and the knowledge that we are interested only in the relative
phase between the basis vectors means it is natural to introduce a transformation where
α = cos(θ/2) and β = eiϕ sin(θ/2). The usual use of {θ, ϕ} in spherical coordinates
leads to the Bloch sphere. The general relation (see, for example, Ref. [7]) between a
density matrix ρ and a vector r lying on/within the Bloch sphere is:

ρ =
1

2
(1 + r · σ) (2.5)

where 1 is the 2D identity matrix, σ := (σx, σy, σz) and the σi are the usual Pauli
matrices.

Given this elegant mapping of qubit states into an intuitively accessible geometric
representation, and the various connections between the Spekkens theory and qubit
states, it is appealing to try to find a similar representation of the epistemic states of
elementary systems. Work towards this aim follows.

2.4.1 A Mapping To 3D Space for Single Systems

Firstly we introduce yet another piece of notation, albeit a simple one. We represent
Spekkens states as vectors of 0s and 1s for the unshaded and shaded squares, respec-
tively. Figure 2.5 gives an example of this mapping.

Figure 2.5: A demonstration of the vector representation of a Spekkens state (for a
single system).

With this simple notation it turns out that it is very easy to map these 4D “Spekkens
vectors” to points in 3D space, analogously to Eq. 2.5.

Result 2.4.1. We can define a transformation M : R4 → R3 that takes a Spekkens
vector vs to 3D Euclidean space, analogously to the transformation that takes 2D Hilbert
space vectors to the complex projective line (Bloch sphere):

M(vs) :=
1

2

 XY
Z

 · vs =
1

2

 1 −1 1 −1
1 −1 −1 1
1 1 −1 −1

 · vTs (2.6)

This transformation bounds all valid epistemic states within an octahedron, analo-
gous to the Bloch sphere. Recalling the definition of the d-dimensional cross polytope
C∆
d (of which the octahedron is the 3D case) in terms of the 1-norm as [9]:

C∆
d :=

{
x ∈ Rd

∣∣∣ ‖x‖1 :=
∑
i

|xi| ≤ 1

}
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we can define a measure of state validity σ : R4 → R1 that is ≤ 1 for all valid epistemic
states and their convex combinations, with the inequality saturated in the former case
and the measure equal to zero for the zero-knowledge state.

σ(vs) = ‖M(vs)‖1

We can prove the statement that convex combinations of allowed states lie within
the octahedron as follows:

Proof. Consider that allowed states lie at the points given by permutations of (±1, 0, 0);
these are ± the set of unit vectors ei. Now form a general convex combination of all of
these:

x =
3∑
i=1

λ+

i ei −
3∑
i=1

λ−
i ei

where
∑3

i=1 (λ+

i − λ
−
i ) = 1 and λ+

i − λ
−
i ≥ 0 ∀i by the definition of convex combina-

tion. Now:

x =
3∑
i=1

(λ+

i − λ
−
i ) ei

‖x‖1 =

∥∥∥∥∥
3∑
i=1

(λ+

i − λ
−
i ) ei

∥∥∥∥∥
1

≤
3∑
i=1

‖(λ+

i − λ
−
i ) ei‖1

=

3∑
i=1

‖ei‖1 · ‖(λ
+

i − λ
−
i )‖1

= 1 ·
3∑
i=1

(λ+

i − λ
−
i ) = 1

Where the inequality is due to the triangle inequality, ‖ei‖1 = 1 was taken outside in
the last line because that equality holds ∀i, and the 1-norm was removed in the last
line because of the previously stated requirement that the (λ+

i − λ
−
i ) are all positive.

Now recall the definition of the octahedron by the 1-norm and see that all these
convex combinations of allowed states x must lie within the octahedron.

Note that invalid Spekkens states may still be in some sense valid quantum states
- they may lie between the octahedron and the Bloch sphere. An example of such a
state is shown in Fig. 2.6.
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Figure 2.6: An illustration of how a disallowed Spekkens state may still lie within the
Bloch sphere. The sphere is illustrated in pale grey and the Spekkens octahedron is in
red, and the point 1

2 (−1, 1,−1) corresponding to the disallowed state is shown as
a black dot.

2.4.2 Generalising the Mapping to Composite Systems

It turns out that the mapping of states to a lower-dimensional space (although not
the state validity function) given in Result 2.4.1 can be fairly easily generalised to
composite systems.

First we must generalise the vector notation introduced in 2.4.1 to the composite
systems. The operation in question is similar to the usual operation of matrix vec-
torisation but with non-standard indices. To see this, consider that in Spekkens’ paper
(Ref. [1]) the convention, as here, for 2-bit systems is to index the ontic states as if
they were 2D Cartesian coordinates rather than like matrix elements: the bottom-left
ontic state is (1, 1) and the top-right is (4, 4). It follows that the indexing for n-bit case
corresponds to n-dimensional Cartesian coordinates.

The vector notation is now developed. We convert shaded/unshaded squares in
the diagrams to 1/0s as before, then vectorise with the last dimension as the slowest-
changing index. A diagram, Fig. 2.7, makes this slightly awkward description clear for
the 2-bit case.

Figure 2.7: An example of the vector vs for a 2-bit composite system. Note that the
first element in the vector corresponds to the bottom-left (1, 1) square, the 2nd to the
square at (2, 1), the third at (3, 1) and so on up until the last element, corresponding to
the top-right (4, 4) square.
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2.4.2.1 Mapping the 2-bit States to 15D Space

We take the tuple of observables on 2 systems given in Eq. 2.4 and construct a trans-
formation function M2 similar to M in Result 2.4.1:

M2(vs) :=
1

4


I1X2

I1Y2
...

Z1Z2

 · vTs =
1

4
mat(O2) · vTs (2.7)

where mat(O2) is the matrix representation of the tuple O2, with the matrix’s rows
being the vectors given by the relation in Eq. 2.3.2

2.4.2.2 Mappings for Arbitrary Dimensions

Whilst it turns out that this approach has its shortcomings - to be discussed in Section
2.4.3 - it does have another use in addition to the geometric representation. Pusey
offers a few examples of 2-bit Spekkens states and the corresponding generators of toy
stabilizer groups [4, 8] but does not give us any deterministic mapping from a Spekkens
state to the toy stabilizer groups. We present such a mapping below.

Result 2.4.2. We can determine the complete group of toy stabilizer observables of
any n-bit Spekkens system as follows. In an extension of our previous results we can
write down the tuple of all valid observables on n bits, On:

On = (all permutations of n single-bit observables [excl. I⊗n])

= (I1I2 · · · Xn, I1I2 · · · Yn, · · · , · · · ,Z1Z2 · · · Zn)

Note that there are 4n−1 observables on n bits. Using the definition of the Spekkens
vector vs as well as that of mat(On) from above, the corresponding toy stabilizer group
on n bits, Gn, is given by:

Gn =

{
oi · [On]i

∣∣∣ |oi| = 1, oi ∈
1

2n
mat(On) · vTs

}
or, to put this into words, we can determine the group of toy stabilizer observables for
a Spekkens state by performing a transformation of the Spekkens vector to a (4n− 1)-d
vector in which the ±1s indicate the signs of the corresponding observables in On, with
all other observables not present in the group.

Appendix A gives a complete map of all 2-bit states to their corresponding toy
stabilizers, determined using the method described above.

2.4.3 Shortcomings of This Approach

Although these matrices of observables are clearly useful, they do have some shortcom-
ings which we have not resolved.

We know that the number of pure stabilizer states on n qubits is given by ns =
2n
∏n
i=1(2i + 1) (see, for example, Ref. [10]) and hence there are this many maximal-

knowledge Spekkens states for n bits also. This fact alone means that our 1-norm
2The ordering present in a tuple is now being used; otherwise we would not know what order to

put the rows of the matrix in.
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measure of state validity from Result 2.4.1 cannot work for n > 1, as the cross-polytope
in d dimensions that the 1-norm describes is known to have 2d = 2(4n−1) 6= ns vertices
[9], so cannot form the convex hull of valid states.

Furthermore, we can argue that there are (far) more degrees of freedom than are in
some sense “necessary” for a geometric mapping. For n = 2, we can see that ns = 60,
but then consider that the 2-bit mapping to 15-d space given in Eq. 2.7 gives us 3 ±1s
distributed in the 15 dimensions of the resulting vector (all other elements are 0) and
there are 23 ·

(
15
3

)
= 3640 ways to distribute these ±1s - but only 60 of these are valid

states! This leads us to suggest that there may be some polytope in lower-dimensional
space which does have vertices corresponding to the maximal-knowledge states.

More simply than the above argument - it seems unlikely that the best represen-
tation of something (toy theory states) that are similar a subset of 4D Hilbert space
(stabilizer states) requires a whole 15 dimensions. Previous work has been completed
that tries to generalise the Bloch sphere to 2 qubits, and manages to do so in the
context of a mere 3-sphere (4 dimensions) [11].

Considering all of the above, we suggest that more work could be performed on
the geometric representation of Spekkens states, with a goal of being able to determine
polytopes that are the convex hull of all valid maximal-knowledge states.
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Chapter 3

Introducing Thermodynamics to
The Spekkens Toy Theory

Now that we have developed a better understanding of the Spekkens toy theory and its
behaviour, and have learned of and developed some tools that make the theory more
mathematically tractable, we turn to our main aim of introducing thermodynamics into
the theory. We will first look at possible definitions of energy in the theory, and will
then attempt to apply the results of this to building some kind of heat engine in the
context of the theory.

3.1 Defining Energy

Given all of the various similarities of the Spekkens theory to (subsets of) quantum
theory that we described in Section 2.3.1, we could perhaps be led to think that a
definition of energy would not be too difficult to find. After all, for some quantum state
|ψn〉 we know that energy measurements upon it will always give En, the eigenvalues
of the Hamiltonian operator.

Given our previous assertion that the valid epistemic states for elementary systems
correspond to a certain set of qubit states, we could be led to simply define energies
as being properties of the epistemic states, but if we make this claim we reach an
uncomfortable conclusion: we would be defining energies as properties of probability
distributions, of states of knowledge, rather than as properties of states of reality.

We argue that to require energy to be an “objective” property of real physical states
is not an unreasonable desideratum. Indeed, this is reminiscent of the usual (and
certainly non-controversial) setting of statistical mechanics in which the microstates
have defined energies but we cannot “access” these - we instead have an expectation
value of energy for the macrostate, given by 〈E〉 = −∂ lnZ

∂β . We explore whether we can
reasonably think of the energy of an epistemic state as an expectation value over the
ontic states below.

3.1.1 Energy as a Property of the Ontic States

We first try to assign energies (completely generally, at this stage) to the ontic states
that compose an elementary system, such that the ith ontic state has some energy Ei
- this is illustrated in Fig. 3.1a.
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E1 E2 E3 E4

E1 E2 E3 E4

Figure 3.1: (a) Illustrates how we assign the energies Ei to the ith ontic states
(b) Illustrates how, if we were to measure the energy of a single elementary system in
some epistemic state, the returned value would tell us which ontic state the system was
in, thus violating the knowledge balance principle.

However, we immediately run into a problem: suppose that we can perform an
energy measurement on some given epistemic state (recall that for epistemic states of
elementary systems, we will know that the system is in either 1 of 2 states - or of 4
states, for the no-knowledge case). Then we get back the “actual” energy of the system;
that of the ontic state which it is in. But this means that we know which ontic state
the system is in and hence the knowledge balance principle is violated! This issue is
illustrated in Fig. 3.1b.

We offer a simple resolution of this problem: we say that a given epistemic state of
an elementary system is in fact a representation of some kind of Platonic ensemble of
a very large number (N) of systems in the same epistemic state, and that an energy
measurement on the state is a performance of the measurement of the type illustrated
in Fig 3.1b on all members of the ensemble.

As such the law of large numbers tells us that in the limit of very large N we recover
the energy given by the average of the energies of the ontic states almost surely, and
hence have no extra knowledge about the state of the system. For the illustrated
example this means that we could say that this system has an expectation value for
energy equal to 1

2(E1 +E4). Furthermore we can see by Hoeffding’s inequality [12] that
the probability that the average energy after N measurements ĒN deviates from the
average of the ontic state energies 〈E〉 by more than a small amount δ is:

Pr
(∣∣ĒN − 〈E〉∣∣ ≥ δ) ≤ 2 exp

(
− 2Nδ2

[max {Ei} −min {Ei}]2

)
(3.1)

Which clearly tends to 0 as N →∞, as expected.

3.1.1.1 Closeness to Validity

It is interesting to see how quickly we approach a no-extra-knowledge state. We will
refer to the probability distribution implied by the energy measurements: for example, if
5 energy measurements on the zero-knowledge state were to return (E1, E2, E2, E4, E3)
we would have a corresponding distribution of (1

5 ,
2
5 ,

1
5 ,

1
5), where the ith bin corresponds

to the ith ontic state. In the interests of absolute clarity we note that these distributions
have no dependence whatsoever on the actual values of the Ei. We will also refer
to the canonical distribution, that which corresponds to the probability distribution
represented by the epistemic state in the original setting (or, completely equivalently,
to the expected distribution implied by energy measurements).

Consider that, while the canonical distribution certainly gives us no extra knowl-
edge, there are likely other distributions that give no extra knowledge. For example, if
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Figure 3.2: A plot of 15 paths taken by DKL(PN ‖ P ) as states are added to the
Platonic ensemble (meaning that a new ensemble is not created for each value of N ,
rather that a new energy measurement is “added” to PN at each step. The y-axis is
logarithmically scaled and as such zero values have been clipped to make the plot clearer.

the probabilities of being in the 4 ontic states were (1
6 ,

1
3 ,

1
6 ,

1
3) then this is clearly just

corresponding to a convex combination of 2 allowed and disjoint epistemic states.
As such, we choose to define the “distance” that a state is from the no-extra-

knowledge state to be the relative entropy (also known as Kullback-Leibler divergence)
between the 2 probability distributions. This is defined, for 2 distributions P and Q,
as [7]:

DKL(P ‖ Q) :=
∑
i

Pi log2

Pi
Qi

(3.2)

Note that DKL is not symmetric in its arguments. We take the second argument to be
the canonical distribution and call it P , and the first argument to be the distribution
implied by the energy measurements and call it PN . Given that in our case P is
uniform then it is easy to show that this relative entropy is in fact the same as the
entropy difference between the distributions, which in turn is some constant minus the
Shannon entropy H of PN , but given the appeal in the meaning of DKL we will not
use that form.

In the spirit of work on smooth entropies [13], we now introduce a notion of being
in an ε-valid state, where the relative entropy between the state implied by the energy
measurements and the allowed state is some small amount ε.

Result 3.1.1. Energy measurements on a system in some epistemic state, in our setting
of the state representing a Platonic ensemble of N systems in the same state, give us
knowledge about the state. We define PN as the probability distribution implied by N
energy measurements, and P as the (uniform) canonical distribution corresponding to
the epistemic state. We say that the state given by PN is ε-valid if:

DKL(PN ‖ P ) ≤ ε

Then, remembering that (i) DKL only differs from H(PN ) by a constant and (ii) H(P )
is the max-entropy state, we can use a result of Antos and Kontoyiannis [14] and state
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that:

Pr (DKL(PN ‖ P ) > ε) ≤ exp

(
− Nε2

2 [log2N ]2

)
which, as expected, goes to 0 as N → ∞. Note that this has no dependence on the
number of ontic states in the base of the epistemic state, but is quite a loose bound.
Thus, we can set arbitrary confidence integrals that we are in an ε-valid state.

Fig. 3.2 shows 15 sample paths taken by DKL(PN ‖ P ) as states are added to the
ensemble, up to N = 100. The asymptotic behaviour is clearly visible (note that the y
axis is log-scaled). The code used to generate this plot is available in Appendix B.

3.1.2 Energy in Composite Systems

The above approach of thinking of energy as expectation values can be extended to
composite systems. We treat only the 2-bit case but all of this could be quite easily
extended to the n-bit case. First, we must consider what form the energies of the
4n = 16 ontic states can take (remember also that maximal-knowledge 2-bit states
have 4 states in their ontic base, and the only allowed less-than-maximal-knowledge
states have 8). Recalling the Cartesian-like indexing of the ontic states of a 2-bit system
from Section 2.4.2, we make the reasonable assumption that the energies combine like
Eij = Ei + Ej (implicitly we are imposing here that the 2 elementary systems that
compose the composite system have the same Ei). This labelling is illustrated in Fig.
3.3.

Figure 3.3: Our convention for assigning energies to the ontic states of a 2-bit system,
following Eij = Ei + Ej with the indices (i, j) being defined as in Section 2.4.2.

Looking at this labelling it is apparent that there are some interesting degeneracies
and symmetries in the 2-bit energies:

• The energies are always symmetric across the diagonal: as such, if the epistemic
state on which an energy measurement is being performed has ≥ 2 diagonally op-
posite ontic states within its ontic base, any single energy measurement returning
an energy corresponding to one of these states does not in fact specify the exact
ontic state of the system exactly, as we found for the elementary system.

• The energies on the diagonal are unique: a measurement returning one of these
energies does specify the exact ontic state of the system. That is, unless:

• If any 2 of the Ei are equal, or in fact (more strongly) if the sum of any 2 the Ei
are equal to twice one of the others.1

1Note an interesting connection here: this is much like the situation of degenerate energy gaps of
a Hamiltonian, meaning that there can exist some partitioning of the system and the bath such that
they are non-interacting and is a case that causes problems when examining thermalisation of quantum
systems [15]. It would be interesting to look into the meaning of this degeneracy in our setting.
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3.1.2.1 Counting the Symmetries

We developed a few mathematical tools to count the symmetries of the Spekkens states
given only their toy stabilizer representation and hence make it easier to identify the 3
bullet points listed above.

Result 3.1.2. Given a toy stabilizer group generator, 〈G〉, and recalling that any toy
stabilizer observable can be represented as a vector (by Eq. 2.3, and with vec(g) denoting
the vector representation of an observable g), then define a generator vector x:

x (〈G〉) :=
1

|〈G〉|
∑
g∈〈G〉

vec(g)

Note that the vector x is similar (but not identical) to the Spekkens vector vs. Now
introduce 2 functions of an index i, ∆(i) and φ(i), which identify whether an element
i is on the diagonal and map i across the diagonal 2, respectively.

∆(i) :=

{
1 if

⌊
i−1

4

⌋
= (i− 1) mod 4

0 otherwise

φ(i) := 4 [(i− 1) mod 4] +

⌊
i− 1

4

⌋
+ 1

Now we can introduce our counting functions, ndiag(x) and nopp(x), that count the
number of on-diagonal elements and the number of diagonally opposite pairs, respec-
tively.

ndiag(x) := #
{

∆(i) · xi = 1 | xi ∈ x
}

nopp(x) :=
1

2
#

{
1

2

(
xi + xφ(i)

) (
1−∆(i)

)
= 1

∣∣∣ xi ∈ x

}
Where #{· · ·} indicates the number of elements in the set.

3.1.2.2 Validity After Measurement for Composite Systems

We can immediately apply the results of Section 3.1.1.1 to the special case of 2-bit
epistemic states that satisfy any of the following:

• ndiag = nopp = 0

• ndiag = 4

• nopp = 2 for a maximal-knowledge state

• nopp = 4 for a submaximal-knowledge state

As these states have canonical distributions that are uniform. For the states other
than this - which contain additional degeneracies and symmetries and hence have non-
uniform canonical distributions - Result 3.1.1 does not follow immediately, but it is
fairly obvious to see that, by the law of large numbers, in the limit of large N the

2The choice of notation φ indicates that this function, given the previously discussed Cartesian-like
indices for Spekkens vectors, is somewhat analogous to a rotation (by π) in Cartesian space.
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distribution implied by the energy measurements will be almost surely equal to the
canonical distribution and hence DKL will tend to 0.

We can in fact now introduce another bound, that is far tighter and more general
than that in Section 3.1.1.1, but introduces a dependence on the size of the ontic base.

Result 3.1.3. Given any epistemic state, the probability distribution implied by energy
measurements will be ε-close to the canonical distribution. We quote Theorem 11.2.1
from Cover and Thomas [16]:

Pr (D(PN ‖ P ) > ε) ≤ 2−Nε · 2−|P | log2(N+1)

And identify that |P | is the size of the ontic base of the state in question. See
that, as predicted, we will be in an ε-valid state with some probability tending to 1 for
N →∞.

3.1.3 Numerical Verification of the Results

We present a numerical verification of the above results claiming that the large-N
Platonic ensemble of epistemic states does not violate the knowledge balance principal
after energy measurement. To do so we introduce yet another bound, following Roy
[17]:

Result 3.1.4. We can upper-bound the expectation value of DKL(PN ‖ P ) in the
special case of 2-bit maximal-knowledge epistemic states with either ndiag = nopp = 0
or ndiag = 4, as in Section. 3.1.2.2 but restricted further to the case of the maximal-
knowledge states, which have an ontic base of size 4. This bound takes the form:

〈DKL(PN ‖ P )〉 ≤ log2

(
3 +N

N

)
(3.3)

Which, once again, tends to 0 as N →∞.

A derivation of Eq. 3.3 can be found in Appendix C.
The advantage of this kind of bound (ie. on an expectation value) is that it can be

tested numerically in a very obvious way: Fig. 3.4 illustrates this. The code used to
generate the figure can be found in Appendix B.
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Figure 3.4: A plot of the empirically calculated expectation value of DKL(PN ‖ P )
(in blue), where the average was taken over 5000 paths (cf. Fig 3.2). The upper bound
of Eq. 3.3 is shown in green, and the pale blue shaded area indicates 2σ2 - twice the
variance - about the expectation value at each point. See that the upper bound holds
and that both the empirical value and the upper bound are tending to 0.

3.2 The Szilard Engine

Now that we have found a consistent way to define energy in the Spekkens toy theory,
we try to put this new knowledge to use. The origins of thermodynamics are in the
study of heat engines [2], and fittingly we here try to implement a very simple engine
in the context of the toy theory.

Figure 3.5: A simple illustration of the operation of the Szilard engine. The steps
(1)-(4) are explained in the text. Note that this example illustrates the case where the
demon’s measurement shows that the particle is on the left - the alternative process
would have the particle on the right.

3.2.1 Background

The Szilard engine [18] can be thought of as a variant on the infamous “Maxwell’s
Demon” gedankenexperiment, in which the ability of a “demon” to observe the positions
and velocities of gas particles allows it to separate the hot and cold particles and hence
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decrease the entropy of the gas and (apparently) violate the second law. For now we
will not concern ourselves with the second law issues, although we do delve into that
debate in Appendix D.

The setting of the Szilard engine is as follows. We begin with a box in a heat bath
containing a single ideal gas particle, and a demon who can sit atop the box and, should
he wish, look inside and observe where the particle is. The demon also has a piston
attached to a weight which he can insert into either side of the box. The engine cycle
consists of the following steps:

(1) The demon measures the position of the particle to determine whether it is on
the left or the right hand side of the box.

(2) The demon inserts the piston/weight on the opposite side to the particle (using
the result of the measurement).

(3) The single-particle gas expands isothermally, moving the piston out and hence
lifting the weight and extracting work.

(4) The demon removes the piston and the system is once again in the initial state.
Note that the demon no longer knows where the particle is.

A simple illustration of this cycle is illustrated in Fig. 3.5.

3.2.2 Constructing the Szilard Engine

Whilst the Szilard engine is conceptually fairly simple, it is far from clear how we could
implement it in the Spekkens theory or in any of the analogous representations that we
have previously discussed. Concepts like isothermal expansion and insertion of a piston
seem at first glance to be highly physical, and despite our work on energy definition
in the toy theory we are still mostly beholden to Spekkens’ accurate observation that
“the toy theory contains almost no physics”.

In the next few sections we shall construct a model of the Szilard engine with
no reference to the toy theory, and will then demonstrate that the model we have
constructed can easily be represented in the toy theory.

3.2.2.1 Framework and Notation

We claim that one can construct a Szilard engine from 3 binary (ie 2-state) systems:

• A demon D with a left state (L) and a right state (R)

• A system S (the box and the particle) with states L and R

• A weight W with a ground state 0 and a lifted/excited state 1

Whilst there is nothing going on in the Szilard engine that is in any sense quantum,
it is very convenient to think of these states as being kets in the computational basis
of qubits. That is to say that the states {L,R} of the demon or the system, and the
states {0, 1} of the weight, will be written like {|0〉 , |1〉} respectively. We will also use
the usual notational convention that subscripts on the kets indicate which system they
describe, eg. |0〉S would indicate the L state of the system. In the interests of clarity
we shall always list the 3 systems in the order DSW , following Eames [19].
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This notation allows us to describe statistical mixtures of states. For example, if
we wished to describe that the location of the gas particle was unknown and hence
that the gas in some sense “filled” the box, we could describe the system with a density
matrix equal to 1

2 (|0〉 〈0|S + |1〉 〈1|S).
We can also describe the energy difference between the ground and lifted weight

states rather succinctly by giving it a Hamiltonian, HW := El |1〉 〈1|W . The Hamil-
tonians of the demon and the system are degenerate due to the symmetry of the de-
mon/system states, and hence are considered to be 0.

3.2.2.2 Operation of the Engine

We can now “translate” the steps of the engine cycle from Section 3.2.1 into our bra-ket
notation for the binary representation.

Working in density matrix notation, we say that the demon starts in the |0〉 〈0|D
state, the weight starts in its ground state |0〉 〈0|W , and the system starts in the afore-
mentioned mixed state which will shall now write as 1

21S . We call the state of the
whole engine at some point in its cycle ρ(t), where t indexes the stage of the cycle. The
initial state ρ(0) of the whole engine is:

ρ(0) = |0〉 〈0|D ⊗
1

2
1S ⊗ |0〉 〈0|W

Now we can run the engine, and we can write down the state of the engine after each
step of the cycle:

(1) The demon makes the measurement, meaning that it takes on the state of the
system, and thus the engine state becomes:

ρ(1) =
1

2
(|00〉 〈00|DS + |11〉 〈11|DS)⊗ |0〉 〈0|W

(2) The demon inserts the piston and thus, because of its informed choice as to which
side to insert the piston on, puts the system into a specific state with probability
1. Without loss of generality - but at the cost of diverging slightly from the literal
physical interpretation - we say that this specific state is |1〉S . It follows that:

ρ(2) =
1

2
1D ⊗ |1〉 〈1|S ⊗ |0〉 〈0|W

(3) Now the gas expands and the weight is lifted to its higher-energy state:

ρ(3) =
1

2
1D ⊗

1

2
1S ⊗ |1〉 〈1|W

(4) Everything must be reset to its original state. We can interpret the resetting
of the weight as representing the replacement of the excited weight by a new
ground-state weight, such that the removed weight(s) act as an energy store.

ρ(4) = ρ(0) = |0〉 〈0|D ⊗
1

2
1S ⊗ |0〉 〈0|W
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Whilst this presentation may be vaguely appealing in its apparent simplicity, it is lack-
ing and unconvincing in several areas. We have simply stated the changes in the system
state with no description of the operations that caused these changes, the justification
of step (2) is arguably unconvincing and hard to understand, and perhaps most impor-
tantly we don’t seem to have learned anything new about the thermodynamics - there
doesn’t seem to be any thermodynamics involved in the maths at all.

We now proceed to construct the above in terms of operations on the systems, and
the thermodynamic results follow.

3.2.3 A Circuit Representation of the Szilard Engine

We will represent our engine using the circuit model of quantum computation, and as
such a brief summary of this follows.

3.2.3.1 Quantum Circuits

The circuit model of quantum computation represents computations by assemblies of
“quantum gates”, which represent reversible operations on the qubits [7]. Furthermore,
these quantum circuits can be conveniently illustrated as circuit diagrams much like
classical logic circuit diagrams and electric circuit diagrams. Quantum circuits have
given rise to various well-known quantum computational results, such as Shor’s cele-
brated prime factoring algorithm [20].

In the quantum circuit setting, qubits are represented by wires, and the gates by
symbols on the wires. Time is implied to run from left to right. An example of a gate
acting on 1 qubit is the X gate, which is represented as

and performs a “bit-flip” that takes |0〉 → |1〉 and vice versa in the computational basis,
much like the classical NOT gate. The matrix representation of the operation is the
Pauli matrix σx.

We can also have gates that act on more than 1 qubit. One of the most common
2-qubit gates is the controlled-NOT or CNOT gate, which is represented as

and performs the X operation (as above) on the target qubit denoted by the crossed
circle (here on the bottom) if and only if the control qubit denoted by the dot (here
on the top) is in the state |1〉. The matrix representation of the CNOT is, for an input
state of (control ⊗ target):

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (3.4)

As an aside to show the “quantumness” of these gates, note that the CNOT can
entangle qubits: taking the control to be the equal superposition of |0〉 and |1〉, and
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the target to be in |0〉, the result of the CNOT will be a maximally entangled (Bell)
state.

Despite this, when in the computational basis without linear superpositions (and
hence in our treatment) there is no real difference between these gates and their classical
equivalents, but we stick with the quantum notation due to the toolbox of notation
and techniques that it brings along with it.

3.2.3.2 The Szilard Engine Circuit

We first present our circuit representation of the Szilard engine, and then attempt to
explain it.

Result 3.2.1. We can represent a Szilard engine as the following quantum circuit:

Demon

System

Weight

(1)

Heat Bath

(2)

(3)

(4)

Figure 3.6: The quantum circuit comprising Result 3.2.1. Refer to the text for expla-
nations.

The bracketed numbers correspond to the items in the list in Section 3.2.2.2. The
X and CNOT gates operate as described above, and we elaborate on the “Expansion”
and “Erasure” gates in the text below. The wiggly arrows on these gates represent
heat transfer to/from the heat bath, and the inequalities are what we claim the work
extraction/cost to be for the gates. This is also justified in the text.

The introduction of the CNOT for the first step very simply justifies the trans-
formation of the engine state to ρ(1), using the notation from Section 3.2.2.2. The
Demon starts in the left-hand state and only “changes his mind” if the control qubit -
the system - is in the right-hand state.

The second step - the transformation to ρ(2) - was previously difficult to justify
but now becomes quite simple. The demon’s 2-state mind is too simple to be able to
work out how to put the piston on the opposite side on its own, so he “flips” his mind
using the X gate, so he is now thinking of the side opposite to the particle, and he
then controls a CNOT on the system (inserting the piston) - thus putting the system
in state |1〉S with certainty. Recall from the definitions in Section 3.2.2.1 that this is
completely analogous to confining the gas particle in one half of the box.

The demon then flips his mind back to its previous state using another X gate
(recall that the Pauli matrices square to the identity, and that in these computational
basis states the CNOT does not modify the control qubit). This second flip is not
strictly necessary - it doesn’t really matter what state the demon is in - but ensures
complete consistency with our initial model of the engine.
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The third step and fourth steps, illustrated as an “Expansion” gate and an “Erasure”
gate, respectively, require rather more detail to be explained.

3.2.4 The Expansion Step

Firstly we reiterate that the expansion step takes the engine from its state after the
piston insertion, ρ(2) = 1

21D ⊗ |1〉 〈1|S ⊗ |0〉 〈0|W , to the state where the weight has
been lifted and the gas has expanded, ρ(3) = 1

21D ⊗
1
21S ⊗ |1〉 〈1|W .

Consider that there are in some sense 2 processes going on here - the lifting of the
weight, and the expansion of the gas in the system. Whilst it is surely unphysical to
do so, at this stage we develop the expansion step by at first considering these two
processes to happen separately.

As we know that the system begins in |1〉S and the weight in |0〉W , it is apparent
that the lifting of the weight can be represented by a CNOT controlled on the system
- this is our first substep of expansion, which we do not claim to be physical.

Now we need an operation to expand the gas; that is perform the transformation
|1〉S

expansion−−−−−−→ 1
21S . But we’ve run into a problem here! Quantum gates represent

unitary operations on the qubits (at least in the textbook setting), which correspond
to rotations of the Bloch Sphere, but the mixed state 1

21S lies within the Bloch sphere.
In order to perform the required transformation we need a non-unitary transformation,
and for this we shall invoke the quantum operations formalism [7].

3.2.4.1 Quantum Operations

Consider that a quantum system coupled to an environment can be totally described
by the density matrix:

ρworld = ρsys ⊗ ρenv
We assume that the total system (the world) evolves unitarily under some trans-

formation U , so we can say that that the world evolves to:

ρ′world = U(ρsys ⊗ ρenv)U †

Now we can trace out the environment and see that the system has been transformed
non-unitarily to:

ρ′sys = Trenv
[
ρ′world

]
= Trenv

[
U(ρsys ⊗ ρenv)U †

]
It can be shown [7] that we can represent the transformation on the system by a

sum of operators acting on its initial state. That is to say:

ρ′sys =
∑
k

EkρsysE
†
k

where the {Ek} are a set of operators known as the “operation elements” which satisfy
the constraint that

∑
k EkE

†
k ≤ 1. Indeed, this representation goes further than the

tracing-out technique and can (when the inequality is not saturated) represent non-
trace-preserving transformations.

We now give an example of a specific quantum operation that is of interest to
us, known as the Generalised Amplitude Damping (GAD) channel, which represent
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“dissipation to an environment at finite temperature” - information on all of this can
once again be found in Ref. [7], with a derivation of the channel available in (for
example) Ref. [21]. The {Ek} for the GAD channel are given by:

E0 =
√
p

(
1 0
0
√

1− γ

)
(3.5)

E1 =
√
p

(
0
√
γ

0 0

)
E2 =

√
1− p

( √
1− γ 0
0 1

)
E3 =

√
1− p

(
0 0√
γ 0

)
With the stationary state of the system given by:

ρ(t→∞) =

(
p 0
0 1− p

)
(3.6)

Where p ∈ [0, 1] , and γ is a parameter that can be generally written (again, see Ref.
[21] for a derivation) as a function of time, γ(t) = 1−e−αt with α being some function of
bath temperature and the strength of the interaction between the bath and the system.

Hopefully the reason that we have presented this channel is clear: isothermal ex-
pansion of a gas in a box that is in a heat bath is the same thing as dissipation to
an environment at finite temperature. We can now construct this component of the
“Expansion” gate.

3.2.4.2 Constructing the Expansion Gate

Since we want to describe the thermalisation of the system S, it is appropriate to take
its final state to be the state at thermal equilibrium, which for a general system with
energy eigenstates |ψn〉 in a bath at temperature T = (kβ)−1 is described by (see for
example Ref. [15]):

ρeq =

∑
n e
−βEn |ψn〉 〈ψn|∑
n e
−βEn

It is easy to see that for a degenerate Hamiltonian, meaning that all of the En are
equal, ρeq is the maximally mixed state 1

21. Then Eq. 3.6 immediately tells us that
our Generalised Amplitude Damping channel has p = 1

2 . The matrix representation of
the initial state |1〉 〈1|S is:

ρS =

(
0 0
0 1

)
Using the operators in Eq. 3.5, we find that:

ρ′s =
∑
k

EkρsE
†
k =

(
pγ 0
0 1− pγ

)
=

(
1
2γ 0
0 1− 1

2γ

)
Recalling that γ(t) = 1 − e−αt, see that in the limit of t → ∞, we do indeed recover
the equilibrium state, as expected:
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Figure 3.7: An illustration of how we have constructed our “Expansion” gate. The
“GAD” gate represents the Generalised Amplitude Damping channel. Once again we
emphasise that this should not be considered to be physical: the 2 steps shown within
the gate happen simultaneously.

ρ′s(t→∞) =
1

2

(
1 0
0 1

)
=

1

2
1

Now, combining this with our previous description of the weight-lifting CNOT gate,
we can construct the full “Expansion” gate. Fig. 3.7 illustrates this construction, but
once again we must reiterate that it is unphysical to consider the 2 constituent steps
separately. To resolve this, we can just use the matrix forms of the 2 steps given in Eq.
3.4 for the CNOT and Eq. 3.5 for the GAD channel. Remembering the correct ordering
of the matrix multiplication - AB for operation B performed first - and noting that
the GAD channel acts on 1 qubit only, we find that the set of operators {Eexpk } for the
full expansion channel are given by the following identity, where the outer subscripts
denote the system that the operator acts upon:

(Eexpk )S⊗W =
[
(EGADk )S ⊗ 1W

]
· CNOTS⊗W

We can now explicitly write the operators for the channel.

Result 3.2.2. The “Expansion” channel, which models the expansion of a gas lifting a
weight, can be represented by the (non-unique) operation elements:

E0 =
1√
2


1 0 0 0
0 1 0 0
0 0 0

√
1− γ

0 0
√

1− γ 0



E1 =
1√
2


0 0 0

√
γ

0 0
√
γ 0

0 0 0 0
0 0 0 0



E2 =
1√
2


√

1− γ 0 0 0
0

√
1− γ 0 0

0 0 0 1
0 0 1 0



E3 =
1√
2


0 0 0 0
0 0 0 0√
γ 0 0 0

0
√
γ 0 0


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Where we have inserted the previously-derived value of p = 1
2 for the GAD channel,

and γ takes the form from before, γ(t) = 1− e−αt.

3.2.4.3 Work Extraction in the Expansion Step

In Fig. 3.6 in Result 3.2.1, we illustrated that the expansion step in some sense involved
the interaction of the engine with a heat bath. We also wrote an inequality next to
the arrows representing this interaction, and claimed that this related to the work
extraction. We present 2 justifications:

• Justification by entropy change3

Consider the (Gibbs) entropy change from step (2) to step (3): both before and
after we trivially have SG(W ) = 0, but SG(S) increases from 0 (pre-expansion;
definitely in state |1〉S) to:

SG(S′) = −2(
1

2
kB ln

1

2
) = kB ln 2

where kB is Boltzmann’s constant. Recalling that dS = dQ/T we argue that this
entropy change is associated with a work extraction of at least kBT ln 2 (where T
is the bath temperature), as in the non-irreversible case we would actually find
that dS = (dQ/T ) + dSi. [22]

• Operational Justification
Alternatively, we can use a new result of Faist et al (2015) [23] to calculate the
minimum work cost of any operation. The authors give a precursor to their main
result that we shall use:

W ε=0 ≥ kBT ln 2 · log2 ‖E (ΠX)‖∞

where the superscript ε = 0 indicated that there is no entropy smoothing involved,
and E (ΠX) indicates some quantum operation E acting on ΠX , the projector
onto the support of the input state4 to the operation, X. For our input state of
|1〉 〈1|S ⊗ |0〉 〈0|W , the projector ΠX is identical to the input state, and we find
that:

W ε=0 ≥ kBT ln 2 · log2

∥∥∥∥∥∥∥∥
1

2


0 0 0 0
0 γ 0 0
0 0 0 0
0 0 0 2− γ


∥∥∥∥∥∥∥∥
∞

= kBT ln 2 · log2

[
1

2
(2− γ)

]
for γ ∈ [0, 1]

= kBT ln 2 · log2

1

2
= −kBT ln 2 as t→∞

Seeing that a negative work cost corresponds to a work extraction, we recover
3This sort of thinking is indebted to Renato Renner’s brief but excellent lecture notes on quantum

thermodynamics. However, these notes have recently disappeared from the ETH website and so cannot
be referenced, and the method is recalled from memory.

4For any state with a (general) density matrix ρ =
∑

i pi |ψi〉 〈ψi|, the projector onto its support is
given by Π =

∑
i |ψi〉 〈ψi|
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the result from the entropy change justification. Note that an advantage of this
approach is that we can calculate entropy changes for any input states, including
truly quantum states - that is to say, off-diagonal density matrix elements.

This means that the Hamiltonian that we wrote down for the weight qubit in Section
3.2.2.1, El |1〉 〈1|W , should have El = kBT ln 2 or else we may find that the weight is
“too heavy” for the engine to lift.

3.2.5 The Erasure Step

The erasure step takes the mixed state (and in principle, any state) to some predeter-
mined state which we require to be |0〉D. It is clearly logically irreversible in that there
is no way to tell what the initial state was given the post-erasure state. The stated work
cost of (at least) kBT ln 2 is given by the Landauer principle [24], which claims that
the entropy decrease of the “memory” (ie the demon qubit) must be accompanied by
an equal or greater entropy increase in the environment and can be partially justified
by the same kind of entropic arguments as above.

The Landauer principle, whilst broadly accepted, is somewhat contentious among
thermodynamicists and indeed philosophers [25, 26]. We will not involve ourselves in
this debate here but Appendix D discusses the thermodynamic issues in the Szilard
engine and argues resolutions using our model, and hence does wade into the debate
somewhat. For now we consider the Landauer principle to be acceptable, and can refer
the reader to the literature for justifications and derivations of the stated work cost:

• del Rio et al present an excellent and highly readable account of the erasure of
some pure state in Ref. [27]

• Weilenmann et al argue that they can justify the thermodynamic meanings of
information theoretic entropies without recourse to the Landauer principle in
Ref. [28]

• Hilt et al argue that the Landauer principle can indeed be derived from consid-
ering some harmonic oscillator coupled to a bath in Ref. [29]

• Bérut et al claim to have experimentally verified the Landauer principle in Ref.
[30] (perhaps this is the most convincing argument in its favour!)

Finally we note that the equality of the work cost of erasure and the work extraction
due to expansion would appear to have saved the second law - this is effectively the
Bennett resolution of the Szilard engine paradox [31].

3.2.6 The Szilard Engine in the Spekkens Theory

Finally we are in a position to give the reader what we promised long ago at the start
of Section 3.2.2: a construction of the engine in the context of the Spekkens toy theory.
Our use of computational basis qubit states means that we can directly use the toy
stabilizer notation to “operate” our quantum circuit (of Result 3.2.1) as the differences
between the toy stabilizers and the stabilizers on qubits do not come in to play for
these simple states.
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3.2.6.1 Translating the Steps to Toy Stabilizer Notation

Expressing the qubit states given in Section 3.2.2.2 in the stabilizer notation is very
simple. We only ever consider operations on 2 of the qubits at any time and so for
clarity will talk only about 2-qubit states, where the third is implicitly in the state it
was last described to be in. Following Section 3.2.2.2, we are initially in:

ρ(0) = |0〉 〈0|D ⊗
1

2
1S ⊗ |0〉 〈0|W

so we can write the DS and W stabilizers as:

〈G〉DS(0) = 〈ZD〉
〈G〉W (0) = ZW

Now we can operate the engine:

(1) Noting that the CNOT gate controlled on the first bit is equivalent to the following
transformation of toy stabilizers [4]:

Z1 → Z1, Z2 → Z1Z2

X1 → X1X2, X2 → X2

We can immediately write the state of 〈G〉DS after measurement:

〈G〉DS(1) = 〈ZD〉
CNOT−−−−→ 〈ZDZS〉

= 〈ZDZS〉

(2) Next we recall that the X gate transforms the stabilizers like:

Z → −Z

And so we write the piston insertion step (consisting of 3 sequential operations:
X gate on the demon, CNOT controlled by the demon, X gate on the demon) as:

〈G〉DS(2) = 〈ZDZS〉
X−→ 〈−ZDZS〉

CNOT−−−−→ 〈−ZS〉
X−→ 〈−ZS〉

= 〈−ZS〉

where the fact that the final transformation on the 1st line does nothing to the
generator is due to the fact that a bit flip acting on a fully mixed state still gives a
fully mixed state. Our previous statement that this 2nd X gate was unnecessary
is now clearly justified.

(3) Now we look at the SW stabilizers in order to perform the expansion step: we
are at first in a pure state where the system is in −ZS and the weight is in ZW :

〈G〉SW (2) = 〈−ZS ,ZW 〉

We return to the unphysical representation of this stage as consisting of a CNOT
and a GAD channel; see that the GAD channel takes any operator to the iden-
tity, and recall the CNOT transformations from item (1). The CNOT stage (we
arbitrarily call the time index for this 2.5) is:

〈G〉SW (2.5) = 〈−ZS ,ZW 〉
CNOT−−−−→ 〈−ZS ,ZSZW 〉

= {ISIW ,−ZSIW ,ZSZW ,−ISZW }
= 〈−ZS ,−ZW 〉
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and the GAD stage then transforms this to:

〈G〉SW (3) = 〈−ZS ,−ZW 〉
GAD−−−→ 〈−ZW 〉

(4) Finally we must perform the erasure step and take the identity state of the demon,
ID, back to the demon’s initial state ZD. The generator for the identity is empty
and so this is slightly awkwardly notated as:

〈G〉D(4) = 〈〉 erasure−−−−−→ 〈ZD〉

and for clarity we rewrite the SW state:

〈G〉SW (4) = 〈G〉SW (3) = 〈−ZW 〉

Which clearly corresponds exactly to the state ρ(4) given in Section 3.2.2.2.

While we do not do this here, it is clear to see that all of the above 2-bit states can
be represented in the original diagrammatic notation by using the mappings given in
Appendix A.

3.2.6.2 A Diversion: Irreversible Transformations on Spekkens States

In the seemingly innocuous act of writing down the action of the GAD channel and the
erasure on the toy stabilizers we have inadvertently introduced a notion of irreversible
transformations into the theory, something that has not previously been studied. By
“irreversible” we mean logically irreversible; there is no way to tell the initial state from
looking at the final state.

In the original notation this is quite appealingly illustrated, in that in addition to
moving around the ontic states, several states are mapped into the same place or one
state is mapped to several places: the size of the ontic base is not conserved. Fig. 3.8 is
an illustration of the transformation performed in the expansion stage (the third step)
of the engine cycle.

Figure 3.8: An illustration of the irreversible transformation of ontic states brought
about by the expansion stage of the engine’s cycle.

Furthermore, we note that there is an appealing geometric interpretation of the
irreversible transformations. It is common to illustrate quantum operations as defor-
mations of the Bloch sphere [7], and so we suggest that irreversible transformations
in the Spekkens theory can be illustrated as deformations of the octahedron of Sec-
tion 2.4.1. In fact, considering that this octahedron which is defined by the 1-norm is
entirely bounded by the sphere of radius 1, it follows immediately that all valid quan-
tum operations (that is, those that correspond to affine transformations on the Bloch
sphere) can potentially be applied to the Spekkens theory.
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We give an example of such a deformation for the GAD case. We know that the
GAD operators (Eq. 3.5) transform the Bloch sphere to [7]:(

x√
1− γ

)2

+

(
y√

1− γ

)2

+

(
z − γ(2p− 1)

1− γ

)2

= 1

And so it turns out to be very easy to write down the transformed Spekkens state
octahedron: ∣∣∣∣ x√

1− γ

∣∣∣∣+

∣∣∣∣ y√
1− γ

∣∣∣∣+

∣∣∣∣z − γ(2p− 1)

1− γ

∣∣∣∣ = 1

This shape is illustrated in Fig. 3.9 for specific values of p and γ.

Figure 3.9: An illustration of the deformation of the Spekkens state octahedron that
the Generalised Amplitude Damping (GAD) channel causes. (a) shows the original
octahedron (defined by the 1-norm), and (b) shows it after applying a GAD channel
with p = 0.8 and γ = 0.5.

3.2.6.3 Violation of the Knowledge Balance Principle

We now briefly and in a rather hand-waving manner consider the behaviour of the
engine when we allow the knowledge balance principle to be violated. We consider the
case where the weight is lifted to a disallowed state, illustrated in Fig. 3.10

Figure 3.10: On the left is the weight state before it is “lifted”, and on the right we
have illustrated the allowed state that it has been lifted to in previous sections as well
as the disallowed state which we are now considering.

Our first indication that something is awry (in addition to the knowledge balance
principle violation) is that the Shannon entropy of the weight changes when it is lifted.
For this single state with a uniform canonical probability distribution the entropy is
dependent only on the size of the ontic base5 |P |:

S = log2 |P |
5It may be of historical interest to the reader that this entropy function is also known as Hartley

entropy, and predates Shannon entropy [32].

31



So the entropy change ∆S is equal to log2 1−log2 2 = −1. Again assuming the Landauer
principle to be valid, we have 2 choices when trying to interpret this thermodynamically:
if the weight is not considered to be in thermal contact with the bath, it implies that the
expansion step of the gas has provided the work that we presume to have effected this
entropy decrease, and hence the engine appears to be extracting more work than the
second law should allow. Alternatively, if we allow the weight to exchange energy with
the bath, this entropy change (at least partially) cancels out that of the gas expansion
and so the engine extracts less work from the bath.

Using the geometric mapping from Section 2.4.1, this final disallowed state cor-
responds to the point 1

2(−1, 1,−1) within the Bloch sphere (this is in fact the state
illustrated in Fig. 2.6). Using Eq. 2.5 - the relationship between the density matrix
and this point - we can see that in some sense it corresponds to the quantum state:

ρ =
1

2
(1 + r · σ)

=
1

2

(
1 +

1

2
(−σx + σy − σz)

)
=

1

4

(
1 −1− i

−1 + i 3

)
And so, assuming that nothing has changed with the expansion of the gas (ie the system
being irreversibly transformed to the mixed state), the final state of SW is given by:

ρ′SW =
1

2
1S ⊗

1

4

(
1 −1− i

−1 + i 3

)
W

=
1

8


1 −1− i 0 0

−1 + i 3 0 0
0 0 1 −1− i
0 0 −1 + i 3


Not only does this look rather different to the final state density matrix found in Section
3.2.4.3, but as the input state is the same as before we can once again apply the result
of Faist et al:

W ε=0 ≥ kBT ln 2 · log2

∥∥ρ′SW∥∥∞
= kBT ln 2 · log2

[
1

8

(
3 +
√

2
)]

≈ −0.86kBT ln 2

Noting that using this assumes that the weight is in thermal contact with the bath. As
we claimed, the engine is now less efficient. We are aware that this final section of our
investigations is by no means rigorous, but we do hope that the reader is convinced
that the knowledge balance principle - and adherence to it - does have thermodynamic
implications.
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Chapter 4

Conclusions

The Spekkens toy theory is an elegant and simple model that, by simply colouring in
squares according to one fundamental rule, presents an appealing argument that almost
all of quantum theory can be reproduced by taking the view that quantum states are
states of knowledge rather than of reality. However, by the author’s own admission the
theory “contains almost no physics”. In this report, we have attempted to introduce
something truly and tangibly physical to the theory: thermodynamics.

We have shown that, when considering the states of knowledge of the theory to
be representative of huge ensembles of similar states, we can extend the theory to
include energies of states in a way that violates neither the fundamental rule of the
theory (the knowledge balance principle) nor some reasonable physical assumptions
about how energy should behave. Building upon this definition, we have implemented
a simple heat engine in the toy theory and shown that it is completely operable within
the theory’s framework. Finally, we have argued that the knowledge balance principle,
and our choice of whether to adhere to it, has thermodynamic implications.

In our rather circuitous route to the above results, we have made progress towards
a geometric representation of states and have used this representation to help us with
the results. We have used results from large deviations theory to quantify the way in
which the aforementioned definition of energy does or does not adhere to the knowledge
balance principle and we have combined group theoretic and geometric techniques in
order to examine properties related to symmetries and degeneracies of states. We have
formulated the infamous Szilard engine as a series of quantum operations upon qubits,
which so far as we are aware is a new result.

We suggest that the work on the geometric representation of Spekkens theory states
could be extended and solidified, and that in turn this framework could potentially be
used to find new results in the context of the theory. In particular, some kind of deter-
ministic “plug-in” measure of knowledge balance principle violation that quantified how
much the principle was violated for completely general states would be very appealing.

In addition, it would be interesting to try to implement more engines/refrigerators
in the toy theory and see how these behave, particularly with regard to knowledge
balance principle adherence. Indeed, any further work trying to link principle adherence
to thermodynamic behaviour would be extremely interesting to see.

Quantum mechanics and quantum information theory are no doubt highly successful
theories with great explanatory and quantitative power, but it is still unsatisfactory to
see that we are yet to fully justify our present formulation of quantum mechanics from
physical principles. This report is in some vague sense an expression of the hope that
such a justification, if it exists, may emerge from thermodynamic principles.
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Appendix A

Map of 2-bit States and Toy Stabilizers

〈Z2〉 〈X2〉 〈Y2〉

〈−Z2〉 〈−X 2〉 〈−Y2〉

〈Z1〉 〈X1〉 〈Y1〉

〈−Z1〉 〈−X 1〉 〈−Y1〉

〈Z1,Z2〉 〈Z1,X2〉 〈Z1,Y2〉

〈Z1,−Z2〉 〈Z1,−X 2〉 〈Z1,−Y2〉

〈X1,Z2〉 〈X1,X2〉 〈X1,Y2〉

〈X1,−Z2〉 〈X1,−X 2〉 〈X1,−Y2〉

〈Y1,Z2〉 〈Y1,X2〉 〈Y1,Y2〉

〈Y1,−Z2〉 〈Y1,−X 2〉 〈Y1,−Y2〉
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〈−Z1,Z2〉 〈−Z1,X2〉 〈−Z1,Y2〉

〈−Z1,−Z2〉 〈−Z1,−X 2〉 〈−Z1,−Y2〉

〈−X 1,Z2〉 〈−X 1,X2〉 〈−X 1,Y2〉

〈−X 1,−Z2〉 〈−X 1,−X 2〉 〈−X 1,−Y2〉

〈−Y1,Z2〉 〈−Y1,X2〉 〈−Y1,Y2〉

〈−Y1,−Z2〉 〈−Y1,−X 2〉 〈−Y1,−Y2〉

〈Z1Z2〉 〈−Z1Z2〉 〈Z1X2〉

〈−Z1X2〉 〈Z1Y2〉 〈−Z1Y2〉

〈X1Z2〉 〈−X 1Z2〉 〈X1X2〉

〈−X 1X2〉 〈X1Y2〉 〈−X 1Y2〉

〈Y1Z2〉 〈−Y1Z2〉 〈Y1X2〉

〈−Y1X2〉 〈Y1Y2〉 〈−Y1Y2〉

〈Z1Z2,X1X2〉 〈Z1Z2,−X 1Y2〉 〈Z1X2,X1Z2〉
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〈Z1X2,−X 1Y2〉 〈X1Z2,−Z1Y2〉 〈X1X2,−Z1Y2〉

〈Z1Z2,X1Y2〉 〈Z1Z2,−X 1X2〉 〈Z1Y2,X1Z2〉

〈Z1Y2,−X 1X2〉 〈X1Z2,−Z1X2〉 〈X1Y2,−Z1X2〉

〈Z1X2,X1Y2〉 〈Z1X2,−X 1Z2〉 〈Z1Y2,X1X2〉

〈Z1Y2,−X 1Z2〉 〈X1X2,−Z1Z2〉 〈X1Y2,−Z1Z2〉

〈Y1Z2,−Z1Y2〉 〈Y1X2,−Z1Y2〉 〈Y1Z2,−Z1X2〉

〈Y1Y2,−Z1X2〉 〈Y1X2,−Z1Z2〉 〈Y1Y2,−Z1Z2〉
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Appendix B

Code Listings

All code was written in a Jupyter 4.1.0 iPython notebook, with the environment:

Python 3.5.1 |Anaconda 2.5.0 (64-bit)| (default, Dec 7 2015, 11:16:01)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]

And with SciPy 0.17.0 and NumPy 1.10.4.

The code used to generate both Fig. 3.2 and Fig. 3.4 was:

import numpy as np
import s c ipy . s t a t s

def newMeasurement ( ) :
return np . random . random_integers ( low = 1 , high = 4)

def updatePDF( pdf , new , n ) :
pdf ∗= n
pdf [ new−1] += 1 .0
pdf /= (n + 1 . 0 )
return pdf

def H_D1( pdf ) :
return np . log2 (4 ) − s c ipy . s t a t s . entropy (pk = pdf , base = 2)

def H_D1_bound(n ) :
return np . log2 ( ( 3 . + n)/n)

H_D1_bound = np . v e c t o r i z e (H_D1_bound)

def genChain ( l ength ) :
pdf = np . array ( [ 1 . , 0 . , 0 . , 0 . ] )
np . random . s h u f f l e ( pdf )

nrange = np . arange (1 , l ength + 1)
d1s = [H_D1(updatePDF( pdf , newMeasurement ( ) , n ) ) for n in nrange ]
return np . array ( d1s )

AVG_SIZE = 5000
F_SIZE = 50
cha ins = [ genChain (F_SIZE) for i in range (AVG_SIZE) ]
x = np . arange (1 , F_SIZE + 1)
d1b_avg = np .mean( chains , ax i s = 0)
d1b_var = np . var ( chains , ax i s = 0)
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N_SAMPLES = 15
SAMPLE_RANGE = 100
samples = np . array ( [ genChain (SAMPLE_RANGE) for i in range (N_SAMPLES) ] )
samplesx = np . arange (1 , SAMPLE_RANGE + 1)

Fig. 3.2 plotted the rows of samples against samplesx, and Fig. 3.4 plotted d1b_avg against x, with
the variance lines being given by d1b_avg ± 2*d1b_var and the upper bound given by H_D1_bound(x),
all also against x.
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Appendix C

Derivation of the Upper Bound on
Expected Divergence

This derivation almost entirely follows Ref. [17].

Firstly we consider the expectation value of the Shannon entropy, here denoted as
H:

〈H(PN 〉 =

〈
−
∑
i

PN,i log2 PN,i

〉
= −

∑
i

〈PN,i log2 PN,i〉 (C.1)

Given we are sampling from N bins, see that PN,i = xi
N where xi is the number of

samples returning bin i.

〈PN,i log2 PN,i〉 =
〈xi
N

log2

xi
N

〉
=

N∑
k=0

Pr(xi = k)
k

N
log2

k

N

=
k∑
k=0

(
N

k

)
pki (1− pi)N−k

k

N
log2

k

N

=
1

n

N∑
k=0

N !

(N − k)!k!
pki (1− pi)N−k

k

N
log2

k

N

=
1

n

N∑
k=1

N !

(N − k)!k!
pki (1− pi)N−k

k

N
log2

k

N

= pi

N∑
k=1

(N − 1)!

(N − k)!(k − 1)!
pk−1
i (1− pi)N−k log2

k

N
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Where the pi are the probabilities corresponding to the expected distribution of PN ,
which is P . Now let j = k − 1 and m = N − 1 :

= pi

m∑
j=0

m!

(m− j)!j!
pji (1− pi)

m−j log2

j + 1

m+ 1

= pi

m∑
j=0

Pr(xi = j) log2

j + 1

m+ 1

Now recall Jensen’s inequality, which states that for a convex function f : f (〈X〉) ≤
〈f(X)〉.

≤ pi log2

 m∑
j=0

Pr(xi = j)
j + 1

m+ 1


= pi log2

m · pi + 1

m+ 1

= pi log2

(
pi +

1− pi
N

)
So we can plug this back into C.1 to get:

〈H(PN )〉 ≥ −
∑
i

pi log2

(
pi +

1− pi
N

)
Next, we move to calculating the expectation value of DKL. Recall the equality:

DKL(PN ‖ P ) = H(PN , P )−H(PN )

〈DKL(PN ‖ P )〉 = 〈H(PN , P )〉 − 〈H(PN )〉
= H(P )− 〈H(PN )〉

= H(P ) +
∑
i

pi log2

(
pi +

1− pi
N

)
Now, recall that the sum over i is the sum over the number of ontic states, and for the
case we are considering this is 4. Furthermore, we are considering the case when the
canonical distribution P is uniform, and so H(P ) = log2 4 and pi = 1

4 .

〈DKL(PN ‖ P )〉 ≤ log2 4 +

4∑
i=1

1

4
log2

(
1

4
+

1− 1
4

N

)

= log2

(
4 +N − 1

N

)
= log2

(
3 +N

N

)
�
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Appendix D

Exorcising Maxwell’s Demon
(Again)

Here1 I will argue a resolution of the apparent second law violation that the Szilard
engine presents, that differs slightly from the “textbook” Bennett resolution and is
informed by the representation of Result 3.2.1.

One might expect that the repeated exorcisms of Maxwell’s demon would have at
some point over the past 150 years finally banished him, but he persists to this day. I
will not even attempt to review the literature on this but will instead concentrate on
the standard resolution due to Bennett [31].

The standard presentation of this is to say that the demon starts in some “ready”
state - where he knows nothing about the state of the system - and then, having been
put into the “left” or “right” state by his measurement, must be returned to the ready
state in order to restart the cycle and make his next measurement. Landauer’s principle
is invoked, and we say that the apparent destruction of information performed by this
resetting of the demon has a work cost of at least kBT ln 2. I do not claim that this
resolution is wrong per se, but I do claim that its apparent weaknesses may be more
effectively argued against by presenting the problem slightly differently.

Ford [25] asks why the demon must start out in the “ready” state, rather than “left”
or “right”, and the model of the Szilard engine in the main text immediately gives an
answer to this question: there is indeed no requirement that the demon starts in the
“ready” state. Instead, I argue, the requirement is that the demon starts in a known
state. That is to say it doesn’t matter whether he starts in the “left” or “right” state so
long as we know which of those it is. The erasure step is therefore necessary to have
certainty about the state of the demon.

Consider the case that we do not perform the erasure and so we do not know whether
we start in “left” or “right”. Using our circuit representation where the measurement
is represented by a CNOT, 50% of the time we will start in the “left” state and so the
cycle will work just fine. However, in the other 50% of cases where we start in the
“right” state, the CNOT will mean that the demon measures the particle to be on the
opposite side to where it is, and so will extract no work. This 50/50 probability of work
extraction is of course the same as guessing, and so there is no second law violation as
the engine doesn’t work!

1I could not justify shoehorning this slightly self-indulgent section into the main narrative of this
report, but did think it was worth including somewhere.
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The obvious argument against this resolution is that the CNOT is an overly sim-
plistic representation of the measurement process - why should it matter what state
we start in? Why not just measure where the particle is and then set the demon to
the result of the measurement, regardless of his initial state? Of course, there is no
reason that we could not have such a measurement, but (and now we once again return
to the helpful language offered by quantum formalism, but still really are dealing with
classical states) now this would be an operation that takes a mixed state to a pure state
and so - and we are invoking Landauer here - arguably has a work cost of kBT ln 2.
Indeed, this is in my opinion quite well justified by both del Rio et al [27] and Faist et
al [23].

I have offered absolutely nothing to support the Landauer principle here, so can’t
claim to have fixed this interpretational issue. However, I do think that this setting, as
well as quite concretely showing that no “ready” state of the demon is required, makes
it clear that one must either choose a model of the Szilard engine where there is an
erasure (with a work cost) or where there is a measurement with a work cost: not
because these are 2 different methods of exorcism, but because the engine demands
that if we do not have one, we must have the other. Whichever choice is made, the
model admits no entropy decrease at any time: uncertainty is “moved” from the system
to the demon, and then out to the heat bath by whichever work-expending step was
chosen.
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